Blah, blah, blah; Bezosism moves, and more: THE WEEKLY RECAP (2021#46)

Super interesting news this week. The Climate Change Conference ended and it kinda sucked (as expected). Amazon keeps screwing around (as expected). The metaverse is coming, and its start is not really impressive (as expected). On the bright side, a couple really cool articles on eyeglasses and the press. Let’s start:


The invisible tech

Good designs merge with the environment and effectively disappear, so you do not even notice they are there. This is true in almost all the branches of design, whether it be architecture, decoration, or software. For me, one perfect example are eyeglasses. I depend on them to see accurately (suffering from both myopia and astigmatism), but most of the time I forget they are there. I am so used to them that even when I am not wearing them, I keep trying to fix their position (like a phantom limb). Also, the moment my glasses do not exactly correct my eyes aberrations, I instantly notice they are not working ‘right’.

This week I found this article by the folks at hackaday talking about the design of lenses, and also a bit about their history. Quite a good read.

Tech In Plain Sight: Eyeglasses, on hackaday


The metaverse is coming for you

Whether you like it or not, the metaverse is something you are gonna read about from now on. Everywhere. So I will try to filter a lot of stuff, but keep the interesting news around. The first one is about some nice piece of hardware that lets you feel touch in your VR sessions. It is not the first device I see doing this (the idea is actually pretty old), but it is coming from a company with infinite resources, so it is always cool to take a look at what they are developing, and where will they be able to end.

The second one is a cool piece on the current state of Facebook’s metaverse. What can you do, how does it work, and what could be the next steps in the platform. Not a big fan of the company, but they have positioned themselves pretty good and thus there are many chances that their vision will lead the industry for quite some time.

Meta’s sci-fi haptic glove prototype lets you feel VR objects using air pockets, on the verge

I Spent 24 Hours in the Metaverse. I Made Friends, Did Work and Panicked About the Future., on the Wall Street Journal


Some news are better when read together

Imagine this: you run one of the most powerful companies in the world. You win billions, sell stuff all over the globe, develop new products, buy other companies, you even go to space. This is the life of Bezos. However, you really do not care about how you achieve all of this. I previously posted about how Amazon workers are treated, using algorithms to track their performance and firing them if they are not efficient enough (with a totally arbitrary definition of ‘efficiency’). However, it seems that all this tracking is unable to tell you if some of your co-workers got infected with Covid. How could this happen? Well, take a look at the second article and you might see a trend: they only care about making money. All the data they acquire is getting used to improve their margins by training algorithms which increase sells on their store. They know what you search (and they manipulate the search results to show their own products first). They know what music you listen to (Amazon music), and also the movies and streams you like (Prime and Twitch). They even know what you speak about at home (Alexa). Respecting your privacy does not increase revenue. Neither caring for the health of their workers.

Amazon fined $500,000 for failing to notify California workers about COVID-19 cases, on the verge

Amazon’s Dark Secret: It Has Failed to Protect Your Data, on wired


Another one bites the dust

Are you ready for this? Are you hanging on the edge of your seat? Another Climate Change Conference bites the dust. And another one gone, and another one gone. Another one bites the dust.

Now seriously (the topic deserves it). Even with flawed data that pictures a prettier world than the real one (see the following links), we cannot seem to realise that the price of not stopping global warming will be infinite orders of magnitude higher than the route we are taking right now. Empty words (blah, blah, blah), actions that talk about reducing (and not stopping the use of) fossil fuels, and very naive proposals that risk the future generations.

It seems to me that there are only three ways of solving this problem. Either we go extinct and the planet heals over time, capitalism as we know it disappears (good luck with that), or science makes it that green energy is cheaper than burning the planet down (good luck with that with the way we fund it, too).

We are getting closer and closer to the point of no return, but economy seems to be above science. So be it.

‘COP26 hasn’t solved the problem’: scientists react to UN climate deal, on Nature

COP26: World agrees to phase-out fossil fuel subsidies and reduce coal, on New Scientist

Countries’ climate pledges built on flawed data, Post investigation finds, on the Washington Post


The invention that rewrote history

I like to end on a bright tone, so sharing this is the right thing to do. Amazing 1-hour documentary on one of the most valuable inventions of human history: the press. I love Stephen Fry, and he does a superb work both in narrating the story and in building a freaking printing press to show how it worked. I particularly enjoyed the bits where you can see one of the first Bibles that Gutenberg printed, which is in a pretty god shape even today.

Stephen Fry Takes Us Inside the Story of Johannes Gutenberg & the First Printing Press, on openculture


And that’s it for the week. Stay safe!

Giga-voxel multidimensional fluorescence imaging combining single-pixel detection and data fusion

Data fusion concept. From Fig.1 in the manuscript. Do you want a 4D reconstruction? Just take several 2D/3D objects and merge them in a clever way.

Some time ago I wrote a short post about using Data Fusion (DF) to perform some kind of Compressive Sensing (CS). We came with that idea when tackling a common problem in multidimensional imaging systems: the more you want to measure, the harder it gets. It is not only the fact that you need a system that is sensitive to many different physical parameters (wavelength, time, polarization, etc.), but also the point of having huge datasets that you need to record and store. If you try to measure a scene with high spatial resolution, in tens or hundreds of spectral channels, and with video frame rates (let’s say 30 or 60 frames per second), you generate gigabytes of data every second. This will burn through your hard drives in a moment, and if you want to send your data to a different lab/computer for analysis, you will need to wait ages for the transmission to end.

While there have been many techniques trying to solve these problems, there is not a really perfect solution (and, in my honest opinion, there cannot be a single solution that will solve all the problems that different systems will face) that allows you to obtain super high quality pictures in many different dimensions. You always need to live with some tradeoffs (for example, doing low spatial resolution but high frame rate, or gathering a low number of spectral bands with good image quality).

Data fusion results, from Fig.3 in the manuscript. Here you can see that the initial single-pixel datasets have low spatial resolution, but the DF results have high spatial resolution AND both spectral and temporal resolution.

However, there are cool ideas that can help a lot. In our last paper, we show how, by borrowing ideas from remote sensing and/or autonomous driving, you can obtain high resolution, multispectral, time-resolved images of fluorescent objects in a simple and effective manner. We use a single-pixel imaging system to build two single-pixel cameras: one that measures multispectral images, and another that obtains time-resolved measurements (in the ps range). Also, we use a conventional pixelated detector to obtain a high spatial resolution image (with no temporal or spectral resolution). The key point here is that we have multiple systems working in parallel, each one doing its best to obtain one specific dimension. For example, the single-pixel spectral camera obtains a 3D image (x,y,lambda) with a very good spectral resolution, but with very low spatial resolution. On the other hand, the pixelated detector acquires a high spatial resolution image, but neither spectral nor time resolved. After obtaining the different datasets, DF allows you to merge all the information in a final multidimensional image, where all the dimensions have been sampled at high resolution (so, our final 4D object has high spatial, temporal, and spectral resolution).

So, what about the compression? The cool thing here is that we only obtain three different datasets: the high resolution picture from the camera, and the two multispectral/time-resolved images from the single-pixel cameras. However, after the reconstruction we obtain a full 4D dataset that amounts for about 1 Gigavoxel. In the end, if you compare the number of voxels we measure versus the number of voxels we retrieve, we have a compression ratio higher than 99.9% (which is quite big if you ask me).

As a sample of the technique, we show the time-resolved fluorescence decay of a simple scene with three different fluorophores (each one of the letters you see on the following figures), where the species are excited and the fluorescence process takes place in less than 25 ns (woah!). You can see the live reconstruction here, and a short talk I made a while ago after the info of the paper, where you can see all the details about the system, the reconstruction algorithm, and so.

Giga-voxel multidimensional fluorescence imaging combining single-pixel detection and data fusion

F. Soldevila, A. J. M. Lenz, A. Ghezzi, A. Farina, C. D’Andrea, and E. Tajahuerce, on Optics Letters (and the arxiv version)

Abstract: Time-resolved fluorescence imaging is a key tool in biomedical applications, as it allows to non-invasively obtain functional and structural information. However, the big amount of collected data introduces challenges in both acquisition speed and processing needs. Here, we introduce a novel technique that allows to acquire a giga-voxel 4D hypercube in a fast manner while measuring only 0.03% of the dataset. The system combines two single-pixel cameras and a conventional 2D array detector working in parallel. Data fusion techniques are introduced to combine the individual 2D and 3D projections acquired by each sensor in the final high-resolution 4D hypercube, which can be used to identify different fluorophore species by their spectral and temporal signatures.

Handling negative patterns for fast single-pixel lifetime imaging

A group of researchers working in France and USA, leaded by N. Ducros, has uploaded an interesting paper this week.

When doing single-pixel imaging, one of the most important aspects you need to take into account is the kind of structured patters (functions) you are going to use. This is quite relevant because it is greatly connected with the speed you are going to achieve (as the number of total measurements needed for obtaining good images strongly depends on the set of functions you choose). Usually, the go-to solution for single-pixel cameras is to either choose random functions, or a set (family) of orthogonal functions (Fourier, DCT, Hadamard, etc.).

The problem with random functions is that they are not orthogonal (it is very hard to distinguish between two different random functions, all of them are similar), so you usually need to project a high number of them (which is time consuming). Orthogonal functions that belong to a basis are a better choice, because you can send the full basis to get “perfect” quality (i.e., without losing information due to undersampling). However, usually these functions have positive and negative values, which is something you cannot directly implement in lots of Spatial Light Modulators (for example, in Digital Micromirror Devices). If you want to implement these patterns, there are multiple workarounds. The most common one is to implement two closely-related patterns sequentially in the SLM to generate one function. This solves the negative-positive problem, but increases the time it takes to obtain an image in a factor two.

What Lorente-Mur et al. show in this paper is a method to generate a new family of positive-only patterns, derived from the original positive-negative family. This makes it possible to obtain images with a reduced number of measurements when compared to the dual or splitting approach I mentioned earlier, but still with high quality. Nice way to tackle one of the most limiting factors of single-pixel architectures.

Working principle visualization of the generalization method to measure with positive-only patterns in single-pixel imaging setups. Figure extracted from Lorente-Mur et al., ”
Handling negative patterns for fast single-pixel lifetime imaging,” at https://hal.archives-ouvertes.fr/hal-02017598

Handling negative patterns for fast single-pixel lifetime imaging

by Antonio Lorente Mur et al., at https://hal.archives-ouvertes.fr/hal-02017598

Abstract:

Pattern generalization was proposed recently as an avenue to increase the acquisition speed of single-pixel imaging setups. This approach consists of designing some positive patterns that reproduce the target patterns with negative values through linear combinations. This avoids the typical burden of acquiring the positive and negative parts of each of the target patterns, which doubles the acquisition time. In this study, we consider the generalization of the Daubechies wavelet patterns and compare images reconstructed using our approach and using the regular splitting approach. Overall, the reduction in the number of illumination patterns should facilitate the implementation of compressive hyperspectral lifetime imaging for fluorescence-guided surgery.

Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens

The group leaded by P. Artal at Murcia University has recently published an interesting paper related to adaptive optics using an adaptive lens. When working in a real scenario, imperfections in the optical elements you use or just the objects you want to image introduce optical aberrations in the pictures you obtain. Usually these aberrations reduce the quality of your images just a bit (introducing a bit of defocus or some astigmatism), but in the worst case scenario it may result in completely useless results.

In order to overcome this problem, usually liquid crystal spatial light modulators or deformable mirrors are used in optical systems to introduce phase corrections to the light going through the system, countering the phase of these aberrations and thus restoring the image quality. However, these systems present several problems. Even though both spatial light modulators and deformable mirrors can correct the problems I mentioned earlier, they work in a reflection configuration. This introduces additional complexity to the optical systems. Also, liquid crystal spatial light modulators are sensitive to polarization, usually have low reflectance values, and tend to be slow.

As a way to tackle those obstacles, the authors have used an adaptive lens in a two-photon microscope to perform the adaptive optics procedure. Adaptive lenses are being used more and more recently to perform aberration correction. In contrast to both spatial light modulators and deformable mirrors, they work in transmission and present very low losses. Moreover, they can introduce low and mid-order aberrations at refresh rates of almost 1 kHz. The working principle can be seen in this figure:

Adaptive_lens
Schematics of the working principle of an adaptive lens. The lens is formed by two thin glass layers, and a liquid in between. Each actuator is triggered by an electrical signal, which deforms the glass windows, generating different shapes and changing the phase of the wavefront passing through the lens. Figure extracted from Stefano Bonora et. al., “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23, 21931-21941 (2015)

In the paper, they show how this device can obtain results comparable to the traditional spatial light modulator approach, with the benefits mentioned before, in a multi-photon microscope.

Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens

by Juan M. Bueno et al., at Optics Express

Abstract:

A multi-actuator adaptive lens (AL) was incorporated into a multi-photon (MP) microscope to improve the quality of images of thick samples. Through a hill-climbing procedure the AL corrected for the specimen-induced aberrations enhancing MP images. The final images hardly differed when two different metrics were used, although the sets of Zernike coefficients were not identical. The optimized MP images acquired with the AL were also compared with those obtained with a liquid-crystal-on-silicon spatial light modulator. Results have shown that both devices lead to similar images, which corroborates the usefulness of this AL for MP imaging.

results_bueno.png
Experimental results showing the improvement on the image obtained with the adaptive lens system. Figure 3 from the paper: Juan M. Bueno, et. al, “Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens,” Opt. Express 26, 14278-14287 (2018)

 

Weekly recap (29/04/2018)

This week we have a lot of interesting stuff:

Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms

Adaptive Optics + Light Sheet Microscopy to see living cells inside the body of a Zebra fish (the favorite fish of biologists!). Really impressive images overcoming scattering caused by tissue. You can read more about the paper on Nature and/or Howard Hughes Medical Institute.

 


The Feynmann Lectures on Physics online

I just read on OpenCulture that The Feynmann Lectures on Physics have been made available online. Until now, only the first part was published, but now you can also find volumes 2 and 3. Time to reread the classics…


Imaging Without Lenses

An interesting text appeared this week in American Scientist covering some aspects of the coming symbiosis between optics, computation and electronics. We are already able to overcome optical resolution, obtain phase information, or even imaging without using traditional optical elements, such as lenses. What’s coming next?


All-Optical Machine Learning Using Diffractive Deep Neural Networks

A very nice paper appeared on arXiv this week.

Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Mona Jarrahi, Aydogan Ozcan

We introduce an all-optical Diffractive Deep Neural Network (D2NN) architecture that can learn to implement various functions after deep learning-based design of passive diffractive layers that work collectively. We experimentally demonstrated the success of this framework by creating 3D-printed D2NNs that learned to implement handwritten digit classification and the function of an imaging lens at terahertz spectrum. With the existing plethora of 3D-printing and other lithographic fabrication methods as well as spatial-light-modulators, this all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can implement, and will find applications in all-optical image analysis, feature detection and object classification, also enabling new camera designs and optical components that can learn to perform unique tasks using D2NNs.

Imagine if Fourier Transforms were discovered before lenses, and then some day someone comes up with just a piece of glass and says “this can make the computations of FT at the speed of light”. Very cool read.


OPEN SPIN MICROSCOPY

I just stumbled upon this project while reading Lab on the Cheap. Seems like a very good resource if you plan to build a light-sheet microscope and do not wanna spend $$$$ on Thorlabs.


Artificial Inteligence kits from Google, updated edition

Last year, AIY Projects launched to give makers the power to build AI into their projects with two do-it-yourself kits. We’re seeing continued demand for the kits, especially from the STEM audience where parents and teachers alike have found the products to be great tools for the classroom. The changing nature of work in the future means students may have jobs that haven’t yet been imagined, and we know that computer science skills, like analytical thinking and creative problem solving, will be crucial.

We’re taking the first of many steps to help educators integrate AIY into STEM lesson plans and help prepare students for the challenges of the future by launching a new version of our AIY kits. The Voice Kit lets you build a voice controlled speaker, while the Vision Kit lets you build a camera that learns to recognize people and objects (check it out here). The new kits make getting started a little easier with clearer instructions, a new app and all the parts in one box.

To make setup easier, both kits have been redesigned to work with the new Raspberry Pi Zero WH, which comes included in the box, along with the USB connector cable and pre-provisioned SD card. Now users no longer need to download the software image and can get running faster. The updated AIY Vision Kit v1.1 also includes the Raspberry Pi Camera v2.

Looking forward to see the price tag and the date they become available.

The week in papers (22/04/18)

As a way to keep posts going, I am starting a short recap about interesting papers being published (or being discovered) every now and then. Probably I will write longer posts about some of them in the future.

Let’s get this thing going:

Two papers using ‘centroid estimation‘ to retrieve interesting information:

Extract voice information using high-speed camera

Mariko AkutsuYasuhiro Oikawa, and Yoshio Yamasaki, at The Journal of the Acoustical Society of America